Artificial General Intelligence

نظرات · 95 بازدیدها

Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive abilities throughout a large range of cognitive tasks.

Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or exceeds human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive capabilities. AGI is considered one of the meanings of strong AI.


Creating AGI is a primary goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research and advancement jobs throughout 37 countries. [4]

The timeline for attaining AGI remains a topic of ongoing debate amongst researchers and experts. Since 2023, some argue that it might be possible in years or decades; others preserve it might take a century or longer; a minority think it may never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the rapid progress towards AGI, recommending it could be attained quicker than numerous anticipate. [7]

There is argument on the specific meaning of AGI and concerning whether modern large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical topic in science fiction and futures studies. [9] [10]

Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have stated that reducing the risk of human extinction posed by AGI should be an international concern. [14] [15] Others discover the development of AGI to be too remote to provide such a risk. [16] [17]

Terminology


AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]

Some academic sources book the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to solve one specific problem however lacks basic cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as people. [a]

Related concepts include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is far more typically smart than human beings, [23] while the notion of transformative AI associates with AI having a large influence on society, for instance, comparable to the farming or it-viking.ch commercial revolution. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For instance, a competent AGI is specified as an AI that outshines 50% of knowledgeable adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a limit of 100%. They think about big language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular techniques. [b]

Intelligence qualities


Researchers typically hold that intelligence is required to do all of the following: [27]

factor, usage method, solve puzzles, and make judgments under uncertainty
represent knowledge, consisting of sound judgment understanding
strategy
find out
- communicate in natural language
- if needed, integrate these abilities in conclusion of any given goal


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) consider extra traits such as creativity (the ability to form unique psychological images and principles) [28] and autonomy. [29]

Computer-based systems that show a lot of these capabilities exist (e.g. see computational creativity, automated reasoning, decision support group, robotic, evolutionary computation, intelligent agent). There is debate about whether contemporary AI systems possess them to a sufficient degree.


Physical qualities


Other abilities are considered desirable in smart systems, as they may affect intelligence or aid in its expression. These include: [30]

- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. relocation and control things, modification place to check out, and so on).


This consists of the ability to spot and react to risk. [31]

Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and control items, modification location to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may already be or end up being AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system suffices, offered it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never ever been proscribed a particular physical personification and therefore does not demand a capability for mobility or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests indicated to verify human-level AGI have actually been considered, including: [33] [34]

The concept of the test is that the maker has to attempt and pretend to be a guy, by responding to concerns put to it, and it will just pass if the pretence is fairly persuading. A considerable part of a jury, who ought to not be professional about makers, must be taken in by the pretence. [37]

AI-complete issues


A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would require to carry out AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of issues that have been conjectured to require general intelligence to fix as well as humans. Examples consist of computer vision, natural language understanding, and handling unforeseen scenarios while solving any real-world issue. [48] Even a particular task like translation needs a machine to read and oke.zone write in both languages, follow the author's argument (factor), comprehend the context (understanding), and consistently replicate the author's original intent (social intelligence). All of these problems need to be resolved simultaneously in order to reach human-level device efficiency.


However, much of these jobs can now be carried out by modern big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on many benchmarks for reading comprehension and visual thinking. [49]

History


Classical AI


Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were convinced that artificial basic intelligence was possible which it would exist in simply a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]

Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the task of making HAL 9000 as sensible as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the problem of developing 'artificial intelligence' will considerably be fixed". [54]

Several classical AI projects, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it ended up being apparent that researchers had actually grossly undervalued the problem of the project. Funding agencies ended up being skeptical of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "carry on a table talk". [58] In response to this and the success of specialist systems, both industry and government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in twenty years, AI researchers who forecasted the impending accomplishment of AGI had actually been misinterpreted. By the 1990s, AI scientists had a reputation for making vain pledges. They became unwilling to make forecasts at all [d] and prevented mention of "human level" synthetic intelligence for fear of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by focusing on specific sub-problems where AI can produce verifiable outcomes and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation market, and research in this vein is greatly funded in both academic community and market. Since 2018 [update], advancement in this field was thought about an emerging trend, and a fully grown stage was expected to be reached in more than ten years. [64]

At the millenium, lots of mainstream AI researchers [65] hoped that strong AI could be established by combining programs that resolve numerous sub-problems. Hans Moravec composed in 1988:


I am positive that this bottom-up route to expert system will one day meet the traditional top-down route more than half way, all set to supply the real-world skills and the commonsense knowledge that has been so frustratingly evasive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven joining the two efforts. [65]

However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:


The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really only one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we must even try to reach such a level, because it appears getting there would simply total up to uprooting our signs from their intrinsic significances (therefore simply reducing ourselves to the practical equivalent of a programmable computer). [66]

Modern artificial basic intelligence research study


The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to please objectives in a wide variety of environments". [68] This kind of AGI, identified by the ability to maximise a mathematical definition of intelligence instead of display human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor lecturers.


As of 2023 [update], a small number of computer scientists are active in AGI research study, and many contribute to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the concept of permitting AI to continually discover and innovate like human beings do.


Feasibility


Since 2023, the advancement and possible achievement of AGI remains a subject of extreme argument within the AI community. While traditional agreement held that AGI was a far-off objective, current improvements have actually led some researchers and industry figures to declare that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would require "unforeseeable and fundamentally unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern-day computing and human-level synthetic intelligence is as large as the gulf between present area flight and practical faster-than-light spaceflight. [80]

A more obstacle is the lack of clarity in specifying what intelligence entails. Does it need awareness? Must it show the ability to set goals as well as pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence need clearly duplicating the brain and its specific professors? Does it need emotions? [81]

Most AI researchers think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, however that today level of development is such that a date can not properly be anticipated. [84] AI specialists' views on the feasibility of AGI wax and subside. Four surveys conducted in 2012 and 2013 suggested that the typical quote among specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% addressed with "never ever" when asked the exact same concern but with a 90% self-confidence instead. [85] [86] Further existing AGI development factors to consider can be found above Tests for verifying human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong bias towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft researchers released a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could reasonably be considered as an early (yet still incomplete) variation of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of people on the Torrance tests of imaginative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has currently been attained with frontier designs. They composed that unwillingness to this view comes from four main factors: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]

2023 likewise marked the introduction of big multimodal models (large language designs efficient in processing or creating multiple techniques such as text, audio, and images). [92]

In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time thinking before they respond". According to Mira Murati, this capability to think before responding represents a brand-new, additional paradigm. It improves design outputs by spending more computing power when generating the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training data and training compute power. [93] [94]

An OpenAI employee, Vahid Kazemi, declared in 2024 that the business had achieved AGI, stating, "In my opinion, we have already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than a lot of humans at a lot of jobs." He also addressed criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their learning procedure to the scientific technique of observing, hypothesizing, and confirming. These statements have actually sparked dispute, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate amazing flexibility, they may not fully fulfill this requirement. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's tactical intentions. [95]

Timescales


Progress in expert system has actually traditionally gone through durations of fast progress separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create area for additional progress. [82] [98] [99] For example, the hardware offered in the twentieth century was not enough to implement deep knowing, which needs big numbers of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time required before a truly flexible AGI is built differ from 10 years to over a century. As of 2007 [update], the consensus in the AGI research study community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have provided a wide variety of viewpoints on whether progress will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards forecasting that the beginning of AGI would happen within 16-26 years for contemporary and historic forecasts alike. That paper has been slammed for how it categorized opinions as expert or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional approach utilized a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the existing deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in very first grade. A grownup comes to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]

In 2020, OpenAI established GPT-3, a language model capable of carrying out lots of diverse tasks without particular training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]

In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to abide by their security standards; Rohrer detached Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system efficient in carrying out more than 600 different tasks. [110]

In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and showed human-level efficiency in tasks spanning multiple domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 could be considered an early, incomplete version of synthetic basic intelligence, stressing the requirement for further expedition and evaluation of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton stated that: [112]

The concept that this stuff might actually get smarter than people - a few individuals thought that, [...] But many people believed it was method off. And I thought it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise said that "The development in the last few years has actually been pretty amazing", which he sees no reason it would slow down, expecting AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would be capable of passing any test a minimum of in addition to human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "strikingly possible". [115]

Whole brain emulation


While the advancement of transformer designs like in ChatGPT is considered the most appealing path to AGI, [116] [117] entire brain emulation can work as an alternative method. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in information, and after that copying and mimicing it on a computer system or another computational gadget. The simulation design need to be adequately loyal to the initial, so that it acts in practically the same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been gone over in expert system research [103] as a technique to strong AI. Neuroimaging technologies that might deliver the required in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will become readily available on a similar timescale to the computing power needed to emulate it.


Early estimates


For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, provided the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at various estimates for the hardware required to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the needed hardware would be offered sometime in between 2015 and 2025, if the exponential development in computer power at the time of writing continued.


Current research


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established a particularly in-depth and publicly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The artificial nerve cell model assumed by Kurzweil and utilized in numerous present artificial neural network applications is easy compared with biological nerve cells. A brain simulation would likely need to record the detailed cellular behaviour of biological nerve cells, currently understood only in broad overview. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are known to play a role in cognitive procedures. [125]

A basic criticism of the simulated brain approach stems from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is needed to ground meaning. [126] [127] If this theory is correct, any totally functional brain model will require to include more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.


Philosophical perspective


"Strong AI" as specified in approach


In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between two hypotheses about expert system: [f]

Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: An artificial intelligence system can (only) imitate it thinks and has a mind and consciousness.


The first one he called "strong" since it makes a more powerful declaration: it assumes something unique has actually happened to the maker that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be precisely identical to a "strong AI" maker, but the latter would likewise have subjective mindful experience. This use is also common in academic AI research study and books. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is necessary for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system scientists the concern is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it actually has mind - indeed, there would be no way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two various things.


Consciousness


Consciousness can have various significances, and some elements play considerable functions in science fiction and the principles of artificial intelligence:


Sentience (or "phenomenal consciousness"): The ability to "feel" understandings or emotions subjectively, instead of the capability to factor about perceptions. Some theorists, such as David Chalmers, utilize the term "awareness" to refer solely to incredible awareness, which is approximately equivalent to life. [132] Determining why and how subjective experience develops is called the tough issue of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had attained life, though this claim was extensively challenged by other specialists. [135]

Self-awareness: To have conscious awareness of oneself as a separate person, particularly to be knowingly mindful of one's own ideas. This is opposed to just being the "topic of one's believed"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the same way it represents everything else)-however this is not what individuals normally suggest when they utilize the term "self-awareness". [g]

These characteristics have a moral measurement. AI sentience would offer rise to issues of well-being and legal security, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are also relevant to the idea of AI rights. [137] Finding out how to incorporate innovative AI with existing legal and social frameworks is an emergent concern. [138]

Benefits


AGI could have a large range of applications. If oriented towards such objectives, AGI might help alleviate various issues worldwide such as cravings, poverty and health issues. [139]

AGI could improve performance and effectiveness in most jobs. For instance, in public health, AGI could speed up medical research study, significantly versus cancer. [140] It could take care of the senior, [141] and equalize access to fast, top quality medical diagnostics. It might use fun, inexpensive and customized education. [141] The need to work to subsist could become outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the question of the place of people in a radically automated society.


AGI could likewise help to make rational decisions, and to expect and avoid disasters. It could likewise assist to profit of potentially disastrous innovations such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's main goal is to prevent existential disasters such as human extinction (which might be tough if the Vulnerable World Hypothesis turns out to be real), [144] it could take measures to significantly minimize the dangers [143] while lessening the impact of these measures on our quality of life.


Risks


Existential dangers


AGI may represent several kinds of existential threat, which are dangers that threaten "the early extinction of Earth-originating intelligent life or the permanent and drastic damage of its capacity for preferable future development". [145] The risk of human extinction from AGI has actually been the subject of lots of disputes, however there is likewise the possibility that the advancement of AGI would result in a completely problematic future. Notably, it could be utilized to spread out and protect the set of values of whoever develops it. If mankind still has moral blind spots similar to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI might help with mass surveillance and brainwashing, which could be utilized to develop a stable repressive around the world totalitarian routine. [147] [148] There is likewise a danger for the makers themselves. If devices that are sentient or otherwise worthy of moral factor to consider are mass created in the future, participating in a civilizational path that indefinitely neglects their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance humankind's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for continuing with due care", not for "deserting AI". [147]

Risk of loss of control and human termination


The thesis that AI poses an existential danger for people, which this threat needs more attention, is questionable but has been backed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed prevalent indifference:


So, facing possible futures of enormous advantages and risks, the experts are undoubtedly doing everything possible to guarantee the finest outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]

The potential fate of humanity has actually in some cases been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence enabled mankind to control gorillas, which are now vulnerable in manner ins which they could not have prepared for. As a result, the gorilla has actually become a threatened species, not out of malice, but simply as a security damage from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to control mankind which we need to beware not to anthropomorphize them and analyze their intents as we would for humans. He stated that people won't be "smart sufficient to create super-intelligent machines, yet extremely stupid to the point of giving it moronic objectives with no safeguards". [155] On the other side, the idea of instrumental merging suggests that nearly whatever their objectives, intelligent representatives will have reasons to try to endure and get more power as intermediary steps to achieving these objectives. And that this does not need having feelings. [156]

Many scholars who are concerned about existential danger advocate for more research study into fixing the "control issue" to address the concern: what types of safeguards, algorithms, or architectures can programmers implement to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of security preventative measures in order to release items before rivals), [159] and the use of AI in weapon systems. [160]

The thesis that AI can pose existential danger also has detractors. Skeptics normally say that AGI is unlikely in the short-term, or that concerns about AGI distract from other issues related to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of people outside of the technology industry, existing chatbots and LLMs are already perceived as though they were AGI, leading to further misconception and fear. [162]

Skeptics often charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some scientists think that the interaction campaigns on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and researchers, provided a joint statement asserting that "Mitigating the danger of termination from AI need to be a global concern together with other societal-scale risks such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of employees may see at least 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer system tools, but also to control robotized bodies.


According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be redistributed: [142]

Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend appears to be toward the second alternative, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will need federal governments to adopt a universal basic earnings. [168]

See likewise


Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI impact
AI security - Research area on making AI safe and helpful
AI alignment - AI conformance to the desired objective
A.I. Rising - 2018 movie directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of machine knowing
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of expert system to play different video games
Generative expert system - AI system efficient in generating material in response to triggers
Human Brain Project - Scientific research project
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task learning - Solving multiple machine discovering tasks at the very same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of synthetic intelligence - Overview of and topical guide to synthetic intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer learning - Artificial intelligence method.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically developed and optimized for synthetic intelligence.
Weak artificial intelligence - Form of synthetic intelligence.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese room.
^ AI creator John McCarthy writes: "we can not yet define in general what type of computational procedures we want to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system researchers, see viewpoint of synthetic intelligence.).
^ The Lighthill report particularly criticized AI's "grand goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA became figured out to money only "mission-oriented direct research, instead of standard undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the remainder of the employees in AI if the creators of new general formalisms would reveal their hopes in a more safeguarded type than has actually in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a standard AI book: "The assertion that makers could perhaps act smartly (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are really thinking (as opposed to replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that artificial general intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020.
^ a b c "AI timelines: What do professionals in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and warns of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real danger is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential risks to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI must be a global concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts alert of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on everybody to ensure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based on the subjects covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of challenging examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, pl.velo.wiki a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers avoided the term expert system for worry of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in maker intelligence, artificial basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of skilled opinion. In Fundamental problems of synthetic intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, Wh

نظرات